123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464 |
- # Licensed under the LGPL: https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html
- # For details: https://github.com/PyCQA/astroid/blob/main/LICENSE
- """
- Astroid hook for the dataclasses library
- Support built-in dataclasses, pydantic.dataclasses, and marshmallow_dataclass-annotated
- dataclasses. References:
- - https://docs.python.org/3/library/dataclasses.html
- - https://pydantic-docs.helpmanual.io/usage/dataclasses/
- - https://lovasoa.github.io/marshmallow_dataclass/
- """
- import sys
- from typing import FrozenSet, Generator, List, Optional, Tuple, Union
- from astroid import context, inference_tip
- from astroid.builder import parse
- from astroid.const import PY37_PLUS, PY39_PLUS
- from astroid.exceptions import (
- AstroidSyntaxError,
- InferenceError,
- MroError,
- UseInferenceDefault,
- )
- from astroid.manager import AstroidManager
- from astroid.nodes.node_classes import (
- AnnAssign,
- Assign,
- AssignName,
- Attribute,
- Call,
- Name,
- NodeNG,
- Subscript,
- Unknown,
- )
- from astroid.nodes.scoped_nodes import ClassDef, FunctionDef
- from astroid.util import Uninferable
- if sys.version_info >= (3, 8):
- from typing import Literal
- else:
- from typing_extensions import Literal
- _FieldDefaultReturn = Union[
- None, Tuple[Literal["default"], NodeNG], Tuple[Literal["default_factory"], Call]
- ]
- DATACLASSES_DECORATORS = frozenset(("dataclass",))
- FIELD_NAME = "field"
- DATACLASS_MODULES = frozenset(
- ("dataclasses", "marshmallow_dataclass", "pydantic.dataclasses")
- )
- DEFAULT_FACTORY = "_HAS_DEFAULT_FACTORY" # based on typing.py
- def is_decorated_with_dataclass(node, decorator_names=DATACLASSES_DECORATORS):
- """Return True if a decorated node has a `dataclass` decorator applied."""
- if not isinstance(node, ClassDef) or not node.decorators:
- return False
- return any(
- _looks_like_dataclass_decorator(decorator_attribute, decorator_names)
- for decorator_attribute in node.decorators.nodes
- )
- def dataclass_transform(node: ClassDef) -> None:
- """Rewrite a dataclass to be easily understood by pylint"""
- for assign_node in _get_dataclass_attributes(node):
- name = assign_node.target.name
- rhs_node = Unknown(
- lineno=assign_node.lineno,
- col_offset=assign_node.col_offset,
- parent=assign_node,
- )
- rhs_node = AstroidManager().visit_transforms(rhs_node)
- node.instance_attrs[name] = [rhs_node]
- if not _check_generate_dataclass_init(node):
- return
- try:
- reversed_mro = list(reversed(node.mro()))
- except MroError:
- reversed_mro = [node]
- field_assigns = {}
- field_order = []
- for klass in (k for k in reversed_mro if is_decorated_with_dataclass(k)):
- for assign_node in _get_dataclass_attributes(klass, init=True):
- name = assign_node.target.name
- if name not in field_assigns:
- field_order.append(name)
- field_assigns[name] = assign_node
- init_str = _generate_dataclass_init([field_assigns[name] for name in field_order])
- try:
- init_node = parse(init_str)["__init__"]
- except AstroidSyntaxError:
- pass
- else:
- init_node.parent = node
- init_node.lineno, init_node.col_offset = None, None
- node.locals["__init__"] = [init_node]
- root = node.root()
- if DEFAULT_FACTORY not in root.locals:
- new_assign = parse(f"{DEFAULT_FACTORY} = object()").body[0]
- new_assign.parent = root
- root.locals[DEFAULT_FACTORY] = [new_assign.targets[0]]
- def _get_dataclass_attributes(node: ClassDef, init: bool = False) -> Generator:
- """Yield the AnnAssign nodes of dataclass attributes for the node.
- If init is True, also include InitVars, but exclude attributes from calls to
- field where init=False.
- """
- for assign_node in node.body:
- if not isinstance(assign_node, AnnAssign) or not isinstance(
- assign_node.target, AssignName
- ):
- continue
- if _is_class_var(assign_node.annotation): # type: ignore[arg-type] # annotation is never None
- continue
- if init:
- value = assign_node.value
- if (
- isinstance(value, Call)
- and _looks_like_dataclass_field_call(value, check_scope=False)
- and any(
- keyword.arg == "init"
- and not keyword.value.bool_value() # type: ignore[union-attr] # value is never None
- for keyword in value.keywords
- )
- ):
- continue
- elif _is_init_var(assign_node.annotation): # type: ignore[arg-type] # annotation is never None
- continue
- yield assign_node
- def _check_generate_dataclass_init(node: ClassDef) -> bool:
- """Return True if we should generate an __init__ method for node.
- This is True when:
- - node doesn't define its own __init__ method
- - the dataclass decorator was called *without* the keyword argument init=False
- """
- if "__init__" in node.locals:
- return False
- found = None
- for decorator_attribute in node.decorators.nodes:
- if not isinstance(decorator_attribute, Call):
- continue
- if _looks_like_dataclass_decorator(decorator_attribute):
- found = decorator_attribute
- if found is None:
- return True
- # Check for keyword arguments of the form init=False
- return all(
- keyword.arg != "init"
- and keyword.value.bool_value() # type: ignore[union-attr] # value is never None
- for keyword in found.keywords
- )
- def _generate_dataclass_init(assigns: List[AnnAssign]) -> str:
- """Return an init method for a dataclass given the targets."""
- target_names = []
- params = []
- assignments = []
- for assign in assigns:
- name, annotation, value = assign.target.name, assign.annotation, assign.value
- target_names.append(name)
- if _is_init_var(annotation): # type: ignore[arg-type] # annotation is never None
- init_var = True
- if isinstance(annotation, Subscript):
- annotation = annotation.slice
- else:
- # Cannot determine type annotation for parameter from InitVar
- annotation = None
- assignment_str = ""
- else:
- init_var = False
- assignment_str = f"self.{name} = {name}"
- if annotation:
- param_str = f"{name}: {annotation.as_string()}"
- else:
- param_str = name
- if value:
- if isinstance(value, Call) and _looks_like_dataclass_field_call(
- value, check_scope=False
- ):
- result = _get_field_default(value)
- if result:
- default_type, default_node = result
- if default_type == "default":
- param_str += f" = {default_node.as_string()}"
- elif default_type == "default_factory":
- param_str += f" = {DEFAULT_FACTORY}"
- assignment_str = (
- f"self.{name} = {default_node.as_string()} "
- f"if {name} is {DEFAULT_FACTORY} else {name}"
- )
- else:
- param_str += f" = {value.as_string()}"
- params.append(param_str)
- if not init_var:
- assignments.append(assignment_str)
- params_string = ", ".join(["self"] + params)
- assignments_string = "\n ".join(assignments) if assignments else "pass"
- return f"def __init__({params_string}) -> None:\n {assignments_string}"
- def infer_dataclass_attribute(
- node: Unknown, ctx: Optional[context.InferenceContext] = None
- ) -> Generator:
- """Inference tip for an Unknown node that was dynamically generated to
- represent a dataclass attribute.
- In the case that a default value is provided, that is inferred first.
- Then, an Instance of the annotated class is yielded.
- """
- assign = node.parent
- if not isinstance(assign, AnnAssign):
- yield Uninferable
- return
- annotation, value = assign.annotation, assign.value
- if value is not None:
- yield from value.infer(context=ctx)
- if annotation is not None:
- yield from _infer_instance_from_annotation(annotation, ctx=ctx)
- else:
- yield Uninferable
- def infer_dataclass_field_call(
- node: Call, ctx: Optional[context.InferenceContext] = None
- ) -> Generator:
- """Inference tip for dataclass field calls."""
- if not isinstance(node.parent, (AnnAssign, Assign)):
- raise UseInferenceDefault
- result = _get_field_default(node)
- if not result:
- yield Uninferable
- else:
- default_type, default = result
- if default_type == "default":
- yield from default.infer(context=ctx)
- else:
- new_call = parse(default.as_string()).body[0].value
- new_call.parent = node.parent
- yield from new_call.infer(context=ctx)
- def _looks_like_dataclass_decorator(
- node: NodeNG, decorator_names: FrozenSet[str] = DATACLASSES_DECORATORS
- ) -> bool:
- """Return True if node looks like a dataclass decorator.
- Uses inference to lookup the value of the node, and if that fails,
- matches against specific names.
- """
- if isinstance(node, Call): # decorator with arguments
- node = node.func
- try:
- inferred = next(node.infer())
- except (InferenceError, StopIteration):
- inferred = Uninferable
- if inferred is Uninferable:
- if isinstance(node, Name):
- return node.name in decorator_names
- if isinstance(node, Attribute):
- return node.attrname in decorator_names
- return False
- return (
- isinstance(inferred, FunctionDef)
- and inferred.name in decorator_names
- and inferred.root().name in DATACLASS_MODULES
- )
- def _looks_like_dataclass_attribute(node: Unknown) -> bool:
- """Return True if node was dynamically generated as the child of an AnnAssign
- statement.
- """
- parent = node.parent
- if not parent:
- return False
- scope = parent.scope()
- return (
- isinstance(parent, AnnAssign)
- and isinstance(scope, ClassDef)
- and is_decorated_with_dataclass(scope)
- )
- def _looks_like_dataclass_field_call(node: Call, check_scope: bool = True) -> bool:
- """Return True if node is calling dataclasses field or Field
- from an AnnAssign statement directly in the body of a ClassDef.
- If check_scope is False, skips checking the statement and body.
- """
- if check_scope:
- stmt = node.statement(future=True)
- scope = stmt.scope()
- if not (
- isinstance(stmt, AnnAssign)
- and stmt.value is not None
- and isinstance(scope, ClassDef)
- and is_decorated_with_dataclass(scope)
- ):
- return False
- try:
- inferred = next(node.func.infer())
- except (InferenceError, StopIteration):
- return False
- if not isinstance(inferred, FunctionDef):
- return False
- return inferred.name == FIELD_NAME and inferred.root().name in DATACLASS_MODULES
- def _get_field_default(field_call: Call) -> _FieldDefaultReturn:
- """Return a the default value of a field call, and the corresponding keyword argument name.
- field(default=...) results in the ... node
- field(default_factory=...) results in a Call node with func ... and no arguments
- If neither or both arguments are present, return ("", None) instead,
- indicating that there is not a valid default value.
- """
- default, default_factory = None, None
- for keyword in field_call.keywords:
- if keyword.arg == "default":
- default = keyword.value
- elif keyword.arg == "default_factory":
- default_factory = keyword.value
- if default is not None and default_factory is None:
- return "default", default
- if default is None and default_factory is not None:
- new_call = Call(
- lineno=field_call.lineno,
- col_offset=field_call.col_offset,
- parent=field_call.parent,
- )
- new_call.postinit(func=default_factory)
- return "default_factory", new_call
- return None
- def _is_class_var(node: NodeNG) -> bool:
- """Return True if node is a ClassVar, with or without subscripting."""
- if PY39_PLUS:
- try:
- inferred = next(node.infer())
- except (InferenceError, StopIteration):
- return False
- return getattr(inferred, "name", "") == "ClassVar"
- # Before Python 3.9, inference returns typing._SpecialForm instead of ClassVar.
- # Our backup is to inspect the node's structure.
- return isinstance(node, Subscript) and (
- isinstance(node.value, Name)
- and node.value.name == "ClassVar"
- or isinstance(node.value, Attribute)
- and node.value.attrname == "ClassVar"
- )
- def _is_init_var(node: NodeNG) -> bool:
- """Return True if node is an InitVar, with or without subscripting."""
- try:
- inferred = next(node.infer())
- except (InferenceError, StopIteration):
- return False
- return getattr(inferred, "name", "") == "InitVar"
- # Allowed typing classes for which we support inferring instances
- _INFERABLE_TYPING_TYPES = frozenset(
- (
- "Dict",
- "FrozenSet",
- "List",
- "Set",
- "Tuple",
- )
- )
- def _infer_instance_from_annotation(
- node: NodeNG, ctx: Optional[context.InferenceContext] = None
- ) -> Generator:
- """Infer an instance corresponding to the type annotation represented by node.
- Currently has limited support for the typing module.
- """
- klass = None
- try:
- klass = next(node.infer(context=ctx))
- except (InferenceError, StopIteration):
- yield Uninferable
- if not isinstance(klass, ClassDef):
- yield Uninferable
- elif klass.root().name in {
- "typing",
- "_collections_abc",
- "",
- }: # "" because of synthetic nodes in brain_typing.py
- if klass.name in _INFERABLE_TYPING_TYPES:
- yield klass.instantiate_class()
- else:
- yield Uninferable
- else:
- yield klass.instantiate_class()
- if PY37_PLUS:
- AstroidManager().register_transform(
- ClassDef, dataclass_transform, is_decorated_with_dataclass
- )
- AstroidManager().register_transform(
- Call,
- inference_tip(infer_dataclass_field_call, raise_on_overwrite=True),
- _looks_like_dataclass_field_call,
- )
- AstroidManager().register_transform(
- Unknown,
- inference_tip(infer_dataclass_attribute, raise_on_overwrite=True),
- _looks_like_dataclass_attribute,
- )
|