12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394 |
- # Copyright (c) 2019 Valentin Valls <valentin.valls@esrf.fr>
- # Copyright (c) 2020-2021 hippo91 <guillaume.peillex@gmail.com>
- # Copyright (c) 2020 Claudiu Popa <pcmanticore@gmail.com>
- # Copyright (c) 2021 Pierre Sassoulas <pierre.sassoulas@gmail.com>
- # Copyright (c) 2021 Marc Mueller <30130371+cdce8p@users.noreply.github.com>
- # Licensed under the LGPL: https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html
- # For details: https://github.com/PyCQA/astroid/blob/main/LICENSE
- """Astroid hooks for scipy.signal module."""
- from astroid.brain.helpers import register_module_extender
- from astroid.builder import parse
- from astroid.manager import AstroidManager
- def scipy_signal():
- return parse(
- """
- # different functions defined in scipy.signals
- def barthann(M, sym=True):
- return numpy.ndarray([0])
- def bartlett(M, sym=True):
- return numpy.ndarray([0])
- def blackman(M, sym=True):
- return numpy.ndarray([0])
- def blackmanharris(M, sym=True):
- return numpy.ndarray([0])
- def bohman(M, sym=True):
- return numpy.ndarray([0])
- def boxcar(M, sym=True):
- return numpy.ndarray([0])
- def chebwin(M, at, sym=True):
- return numpy.ndarray([0])
- def cosine(M, sym=True):
- return numpy.ndarray([0])
- def exponential(M, center=None, tau=1.0, sym=True):
- return numpy.ndarray([0])
- def flattop(M, sym=True):
- return numpy.ndarray([0])
- def gaussian(M, std, sym=True):
- return numpy.ndarray([0])
- def general_gaussian(M, p, sig, sym=True):
- return numpy.ndarray([0])
- def hamming(M, sym=True):
- return numpy.ndarray([0])
- def hann(M, sym=True):
- return numpy.ndarray([0])
- def hanning(M, sym=True):
- return numpy.ndarray([0])
- def impulse2(system, X0=None, T=None, N=None, **kwargs):
- return numpy.ndarray([0]), numpy.ndarray([0])
- def kaiser(M, beta, sym=True):
- return numpy.ndarray([0])
- def nuttall(M, sym=True):
- return numpy.ndarray([0])
- def parzen(M, sym=True):
- return numpy.ndarray([0])
- def slepian(M, width, sym=True):
- return numpy.ndarray([0])
- def step2(system, X0=None, T=None, N=None, **kwargs):
- return numpy.ndarray([0]), numpy.ndarray([0])
- def triang(M, sym=True):
- return numpy.ndarray([0])
- def tukey(M, alpha=0.5, sym=True):
- return numpy.ndarray([0])
- """
- )
- register_module_extender(AstroidManager(), "scipy.signal", scipy_signal)
|