brain_scipy_signal.py 2.6 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394
  1. # Copyright (c) 2019 Valentin Valls <valentin.valls@esrf.fr>
  2. # Copyright (c) 2020-2021 hippo91 <guillaume.peillex@gmail.com>
  3. # Copyright (c) 2020 Claudiu Popa <pcmanticore@gmail.com>
  4. # Copyright (c) 2021 Pierre Sassoulas <pierre.sassoulas@gmail.com>
  5. # Copyright (c) 2021 Marc Mueller <30130371+cdce8p@users.noreply.github.com>
  6. # Licensed under the LGPL: https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html
  7. # For details: https://github.com/PyCQA/astroid/blob/main/LICENSE
  8. """Astroid hooks for scipy.signal module."""
  9. from astroid.brain.helpers import register_module_extender
  10. from astroid.builder import parse
  11. from astroid.manager import AstroidManager
  12. def scipy_signal():
  13. return parse(
  14. """
  15. # different functions defined in scipy.signals
  16. def barthann(M, sym=True):
  17. return numpy.ndarray([0])
  18. def bartlett(M, sym=True):
  19. return numpy.ndarray([0])
  20. def blackman(M, sym=True):
  21. return numpy.ndarray([0])
  22. def blackmanharris(M, sym=True):
  23. return numpy.ndarray([0])
  24. def bohman(M, sym=True):
  25. return numpy.ndarray([0])
  26. def boxcar(M, sym=True):
  27. return numpy.ndarray([0])
  28. def chebwin(M, at, sym=True):
  29. return numpy.ndarray([0])
  30. def cosine(M, sym=True):
  31. return numpy.ndarray([0])
  32. def exponential(M, center=None, tau=1.0, sym=True):
  33. return numpy.ndarray([0])
  34. def flattop(M, sym=True):
  35. return numpy.ndarray([0])
  36. def gaussian(M, std, sym=True):
  37. return numpy.ndarray([0])
  38. def general_gaussian(M, p, sig, sym=True):
  39. return numpy.ndarray([0])
  40. def hamming(M, sym=True):
  41. return numpy.ndarray([0])
  42. def hann(M, sym=True):
  43. return numpy.ndarray([0])
  44. def hanning(M, sym=True):
  45. return numpy.ndarray([0])
  46. def impulse2(system, X0=None, T=None, N=None, **kwargs):
  47. return numpy.ndarray([0]), numpy.ndarray([0])
  48. def kaiser(M, beta, sym=True):
  49. return numpy.ndarray([0])
  50. def nuttall(M, sym=True):
  51. return numpy.ndarray([0])
  52. def parzen(M, sym=True):
  53. return numpy.ndarray([0])
  54. def slepian(M, width, sym=True):
  55. return numpy.ndarray([0])
  56. def step2(system, X0=None, T=None, N=None, **kwargs):
  57. return numpy.ndarray([0]), numpy.ndarray([0])
  58. def triang(M, sym=True):
  59. return numpy.ndarray([0])
  60. def tukey(M, alpha=0.5, sym=True):
  61. return numpy.ndarray([0])
  62. """
  63. )
  64. register_module_extender(AstroidManager(), "scipy.signal", scipy_signal)