# Copyright (c) 2006-2007, 2009-2014 LOGILAB S.A. (Paris, FRANCE) # Copyright (c) 2009 Mads Kiilerich # Copyright (c) 2010 Daniel Harding # Copyright (c) 2012-2014 Google, Inc. # Copyright (c) 2012 FELD Boris # Copyright (c) 2013-2020 Claudiu Popa # Copyright (c) 2014 Brett Cannon # Copyright (c) 2014 Ricardo Gemignani # Copyright (c) 2014 Arun Persaud # Copyright (c) 2015 Dmitry Pribysh # Copyright (c) 2015 Florian Bruhin # Copyright (c) 2015 Radu Ciorba # Copyright (c) 2015 Ionel Cristian Maries # Copyright (c) 2016, 2018-2019 Ashley Whetter # Copyright (c) 2016-2017 Łukasz Rogalski # Copyright (c) 2016-2017 Moises Lopez # Copyright (c) 2016 Brian C. Lane # Copyright (c) 2017-2018, 2020 hippo91 # Copyright (c) 2017 ttenhoeve-aa # Copyright (c) 2018 Alan Chan # Copyright (c) 2018 Sushobhit <31987769+sushobhit27@users.noreply.github.com> # Copyright (c) 2018 Yury Gribov # Copyright (c) 2018 Caio Carrara # Copyright (c) 2018 ssolanki # Copyright (c) 2018 Bryce Guinta # Copyright (c) 2018 Bryce Guinta # Copyright (c) 2018 Ville Skyttä # Copyright (c) 2018 Brian Shaginaw # Copyright (c) 2019-2021 Pierre Sassoulas # Copyright (c) 2019 Matthijs Blom <19817960+MatthijsBlom@users.noreply.github.com> # Copyright (c) 2019 Djailla # Copyright (c) 2019 Hugo van Kemenade # Copyright (c) 2019 Nathan Marrow # Copyright (c) 2019 Svet # Copyright (c) 2019 Pascal Corpet # Copyright (c) 2020 Batuhan Taskaya # Copyright (c) 2020 Luigi # Copyright (c) 2020 ethan-leba # Copyright (c) 2020 Damien Baty # Copyright (c) 2020 Andrew Simmons # Copyright (c) 2020 Ram Rachum # Copyright (c) 2020 Slavfox # Copyright (c) 2020 Anthony Sottile # Copyright (c) 2021 Daniël van Noord <13665637+DanielNoord@users.noreply.github.com> # Copyright (c) 2021 bot # Copyright (c) 2021 Yu Shao, Pang <36848472+yushao2@users.noreply.github.com> # Copyright (c) 2021 Mark Byrne <31762852+mbyrnepr2@users.noreply.github.com> # Copyright (c) 2021 Nick Drozd # Copyright (c) 2021 Arianna Y <92831762+areveny@users.noreply.github.com> # Copyright (c) 2021 Jaehoon Hwang # Copyright (c) 2021 Samuel FORESTIER # Copyright (c) 2021 Marc Mueller <30130371+cdce8p@users.noreply.github.com> # Copyright (c) 2021 David Liu # Copyright (c) 2021 Matus Valo # Copyright (c) 2021 Lorena B <46202743+lorena-b@users.noreply.github.com> # Licensed under the GPL: https://www.gnu.org/licenses/old-licenses/gpl-2.0.html # For details: https://github.com/PyCQA/pylint/blob/main/LICENSE """some functions that may be useful for various checkers """ import builtins import itertools import numbers import re import string import warnings from functools import lru_cache, partial from typing import ( Callable, Dict, Iterable, List, Match, Optional, Set, Tuple, Type, TypeVar, Union, ) import _string import astroid import astroid.objects from astroid import TooManyLevelsError, nodes from astroid.context import InferenceContext COMP_NODE_TYPES = ( nodes.ListComp, nodes.SetComp, nodes.DictComp, nodes.GeneratorExp, ) EXCEPTIONS_MODULE = "builtins" ABC_MODULES = {"abc", "_py_abc"} ABC_METHODS = { "abc.abstractproperty", "abc.abstractmethod", "abc.abstractclassmethod", "abc.abstractstaticmethod", } TYPING_PROTOCOLS = frozenset( {"typing.Protocol", "typing_extensions.Protocol", ".Protocol"} ) ITER_METHOD = "__iter__" AITER_METHOD = "__aiter__" NEXT_METHOD = "__next__" GETITEM_METHOD = "__getitem__" CLASS_GETITEM_METHOD = "__class_getitem__" SETITEM_METHOD = "__setitem__" DELITEM_METHOD = "__delitem__" CONTAINS_METHOD = "__contains__" KEYS_METHOD = "keys" # Dictionary which maps the number of expected parameters a # special method can have to a set of special methods. # The following keys are used to denote the parameters restrictions: # # * None: variable number of parameters # * number: exactly that number of parameters # * tuple: this are the odd ones. Basically it means that the function # can work with any number of arguments from that tuple, # although it's best to implement it in order to accept # all of them. _SPECIAL_METHODS_PARAMS = { None: ("__new__", "__init__", "__call__"), 0: ( "__del__", "__repr__", "__str__", "__bytes__", "__hash__", "__bool__", "__dir__", "__len__", "__length_hint__", "__iter__", "__reversed__", "__neg__", "__pos__", "__abs__", "__invert__", "__complex__", "__int__", "__float__", "__index__", "__trunc__", "__floor__", "__ceil__", "__enter__", "__aenter__", "__getnewargs_ex__", "__getnewargs__", "__getstate__", "__reduce__", "__copy__", "__unicode__", "__nonzero__", "__await__", "__aiter__", "__anext__", "__fspath__", ), 1: ( "__format__", "__lt__", "__le__", "__eq__", "__ne__", "__gt__", "__ge__", "__getattr__", "__getattribute__", "__delattr__", "__delete__", "__instancecheck__", "__subclasscheck__", "__getitem__", "__missing__", "__delitem__", "__contains__", "__add__", "__sub__", "__mul__", "__truediv__", "__floordiv__", "__rfloordiv__", "__mod__", "__divmod__", "__lshift__", "__rshift__", "__and__", "__xor__", "__or__", "__radd__", "__rsub__", "__rmul__", "__rtruediv__", "__rmod__", "__rdivmod__", "__rpow__", "__rlshift__", "__rrshift__", "__rand__", "__rxor__", "__ror__", "__iadd__", "__isub__", "__imul__", "__itruediv__", "__ifloordiv__", "__imod__", "__ilshift__", "__irshift__", "__iand__", "__ixor__", "__ior__", "__ipow__", "__setstate__", "__reduce_ex__", "__deepcopy__", "__cmp__", "__matmul__", "__rmatmul__", "__imatmul__", "__div__", ), 2: ("__setattr__", "__get__", "__set__", "__setitem__", "__set_name__"), 3: ("__exit__", "__aexit__"), (0, 1): ("__round__",), (1, 2): ("__pow__",), } SPECIAL_METHODS_PARAMS = { name: params for params, methods in _SPECIAL_METHODS_PARAMS.items() for name in methods } PYMETHODS = set(SPECIAL_METHODS_PARAMS) SUBSCRIPTABLE_CLASSES_PEP585 = frozenset( ( "builtins.tuple", "builtins.list", "builtins.dict", "builtins.set", "builtins.frozenset", "builtins.type", "collections.deque", "collections.defaultdict", "collections.OrderedDict", "collections.Counter", "collections.ChainMap", "_collections_abc.Awaitable", "_collections_abc.Coroutine", "_collections_abc.AsyncIterable", "_collections_abc.AsyncIterator", "_collections_abc.AsyncGenerator", "_collections_abc.Iterable", "_collections_abc.Iterator", "_collections_abc.Generator", "_collections_abc.Reversible", "_collections_abc.Container", "_collections_abc.Collection", "_collections_abc.Callable", "_collections_abc.Set", "_collections_abc.MutableSet", "_collections_abc.Mapping", "_collections_abc.MutableMapping", "_collections_abc.Sequence", "_collections_abc.MutableSequence", "_collections_abc.ByteString", "_collections_abc.MappingView", "_collections_abc.KeysView", "_collections_abc.ItemsView", "_collections_abc.ValuesView", "contextlib.AbstractContextManager", "contextlib.AbstractAsyncContextManager", "re.Pattern", "re.Match", ) ) T_Node = TypeVar("T_Node", bound=nodes.NodeNG) class NoSuchArgumentError(Exception): pass class InferredTypeError(Exception): pass def is_inside_lambda(node: nodes.NodeNG) -> bool: """Return whether the given node is inside a lambda""" warnings.warn( "utils.is_inside_lambda will be removed in favour of calling " "utils.get_node_first_ancestor_of_type(x, nodes.Lambda) in pylint 3.0", DeprecationWarning, ) return any(isinstance(parent, nodes.Lambda) for parent in node.node_ancestors()) def get_all_elements( node: nodes.NodeNG, ) -> Iterable[nodes.NodeNG]: """Recursively returns all atoms in nested lists and tuples.""" if isinstance(node, (nodes.Tuple, nodes.List)): for child in node.elts: yield from get_all_elements(child) else: yield node def is_super(node: nodes.NodeNG) -> bool: """return True if the node is referencing the "super" builtin function""" if getattr(node, "name", None) == "super" and node.root().name == "builtins": return True return False def is_error(node: nodes.FunctionDef) -> bool: """Return true if the given function node only raises an exception""" return len(node.body) == 1 and isinstance(node.body[0], nodes.Raise) builtins = builtins.__dict__.copy() # type: ignore[assignment] SPECIAL_BUILTINS = ("__builtins__",) # '__path__', '__file__') def is_builtin_object(node: nodes.NodeNG) -> bool: """Returns True if the given node is an object from the __builtin__ module.""" return node and node.root().name == "builtins" def is_builtin(name: str) -> bool: """return true if could be considered as a builtin defined by python""" return name in builtins or name in SPECIAL_BUILTINS # type: ignore[operator] def is_defined_in_scope( var_node: nodes.NodeNG, varname: str, scope: nodes.NodeNG, ) -> bool: if isinstance(scope, nodes.If): for node in scope.body: if ( isinstance(node, nodes.Assign) and any( isinstance(target, nodes.AssignName) and target.name == varname for target in node.targets ) ) or (isinstance(node, nodes.Nonlocal) and varname in node.names): return True elif isinstance(scope, (COMP_NODE_TYPES, nodes.For)): for ass_node in scope.nodes_of_class(nodes.AssignName): if ass_node.name == varname: return True elif isinstance(scope, nodes.With): for expr, ids in scope.items: if expr.parent_of(var_node): break if ids and isinstance(ids, nodes.AssignName) and ids.name == varname: return True elif isinstance(scope, (nodes.Lambda, nodes.FunctionDef)): if scope.args.is_argument(varname): # If the name is found inside a default value # of a function, then let the search continue # in the parent's tree. if scope.args.parent_of(var_node): try: scope.args.default_value(varname) scope = scope.parent is_defined_in_scope(var_node, varname, scope) except astroid.NoDefault: pass return True if getattr(scope, "name", None) == varname: return True elif isinstance(scope, nodes.ExceptHandler): if isinstance(scope.name, nodes.AssignName): ass_node = scope.name if ass_node.name == varname: return True return False def is_defined_before(var_node: nodes.Name) -> bool: """Check if the given variable node is defined before Verify that the variable node is defined by a parent node (list, set, dict, or generator comprehension, lambda) or in a previous sibling node on the same line (statement_defining ; statement_using). """ varname = var_node.name for parent in var_node.node_ancestors(): if is_defined_in_scope(var_node, varname, parent): return True # possibly multiple statements on the same line using semi colon separator stmt = var_node.statement() _node = stmt.previous_sibling() lineno = stmt.fromlineno while _node and _node.fromlineno == lineno: for assign_node in _node.nodes_of_class(nodes.AssignName): if assign_node.name == varname: return True for imp_node in _node.nodes_of_class((nodes.ImportFrom, nodes.Import)): if varname in [name[1] or name[0] for name in imp_node.names]: return True _node = _node.previous_sibling() return False def is_default_argument( node: nodes.NodeNG, scope: Optional[nodes.NodeNG] = None ) -> bool: """return true if the given Name node is used in function or lambda default argument's value """ if not scope: scope = node.scope() if isinstance(scope, (nodes.FunctionDef, nodes.Lambda)): all_defaults = itertools.chain( scope.args.defaults, (d for d in scope.args.kw_defaults if d is not None) ) return any( default_name_node is node for default_node in all_defaults for default_name_node in default_node.nodes_of_class(nodes.Name) ) return False def is_func_decorator(node: nodes.NodeNG) -> bool: """return true if the name is used in function decorator""" for parent in node.node_ancestors(): if isinstance(parent, nodes.Decorators): return True if parent.is_statement or isinstance( parent, ( nodes.Lambda, nodes.ComprehensionScope, nodes.ListComp, ), ): break return False def is_ancestor_name(frame: nodes.ClassDef, node: nodes.NodeNG) -> bool: """return whether `frame` is an astroid.Class node with `node` in the subtree of its bases attribute """ if not isinstance(frame, nodes.ClassDef): return False return any(node in base.nodes_of_class(nodes.Name) for base in frame.bases) def is_being_called(node: nodes.NodeNG) -> bool: """return True if node is the function being called in a Call node""" return isinstance(node.parent, nodes.Call) and node.parent.func is node def assign_parent(node: nodes.NodeNG) -> nodes.NodeNG: """return the higher parent which is not an AssignName, Tuple or List node""" while node and isinstance(node, (nodes.AssignName, nodes.Tuple, nodes.List)): node = node.parent return node def overrides_a_method(class_node: nodes.ClassDef, name: str) -> bool: """return True if is a method overridden from an ancestor which is not the base object class""" for ancestor in class_node.ancestors(): if ancestor.name == "object": continue if name in ancestor and isinstance(ancestor[name], nodes.FunctionDef): return True return False def check_messages(*messages: str) -> Callable: """decorator to store messages that are handled by a checker method""" def store_messages(func): func.checks_msgs = messages return func return store_messages class IncompleteFormatString(Exception): """A format string ended in the middle of a format specifier.""" class UnsupportedFormatCharacter(Exception): """A format character in a format string is not one of the supported format characters.""" def __init__(self, index): super().__init__(index) self.index = index def parse_format_string( format_string: str, ) -> Tuple[Set[str], int, Dict[str, str], List[str]]: """Parses a format string, returning a tuple of (keys, num_args), where keys is the set of mapping keys in the format string, and num_args is the number of arguments required by the format string. Raises IncompleteFormatString or UnsupportedFormatCharacter if a parse error occurs.""" keys = set() key_types = {} pos_types = [] num_args = 0 def next_char(i): i += 1 if i == len(format_string): raise IncompleteFormatString return (i, format_string[i]) i = 0 while i < len(format_string): char = format_string[i] if char == "%": i, char = next_char(i) # Parse the mapping key (optional). key = None if char == "(": depth = 1 i, char = next_char(i) key_start = i while depth != 0: if char == "(": depth += 1 elif char == ")": depth -= 1 i, char = next_char(i) key_end = i - 1 key = format_string[key_start:key_end] # Parse the conversion flags (optional). while char in "#0- +": i, char = next_char(i) # Parse the minimum field width (optional). if char == "*": num_args += 1 i, char = next_char(i) else: while char in string.digits: i, char = next_char(i) # Parse the precision (optional). if char == ".": i, char = next_char(i) if char == "*": num_args += 1 i, char = next_char(i) else: while char in string.digits: i, char = next_char(i) # Parse the length modifier (optional). if char in "hlL": i, char = next_char(i) # Parse the conversion type (mandatory). flags = "diouxXeEfFgGcrs%a" if char not in flags: raise UnsupportedFormatCharacter(i) if key: keys.add(key) key_types[key] = char elif char != "%": num_args += 1 pos_types.append(char) i += 1 return keys, num_args, key_types, pos_types def split_format_field_names(format_string) -> Tuple[str, Iterable[Tuple[bool, str]]]: try: return _string.formatter_field_name_split(format_string) except ValueError as e: raise IncompleteFormatString() from e def collect_string_fields(format_string) -> Iterable[Optional[str]]: """Given a format string, return an iterator of all the valid format fields. It handles nested fields as well. """ formatter = string.Formatter() try: parseiterator = formatter.parse(format_string) for result in parseiterator: if all(item is None for item in result[1:]): # not a replacement format continue name = result[1] nested = result[2] yield name if nested: yield from collect_string_fields(nested) except ValueError as exc: # Probably the format string is invalid. if exc.args[0].startswith("cannot switch from manual"): # On Jython, parsing a string with both manual # and automatic positions will fail with a ValueError, # while on CPython it will simply return the fields, # the validation being done in the interpreter (?). # We're just returning two mixed fields in order # to trigger the format-combined-specification check. yield "" yield "1" return raise IncompleteFormatString(format_string) from exc def parse_format_method_string( format_string: str, ) -> Tuple[List[Tuple[str, List[Tuple[bool, str]]]], int, int]: """ Parses a PEP 3101 format string, returning a tuple of (keyword_arguments, implicit_pos_args_cnt, explicit_pos_args), where keyword_arguments is the set of mapping keys in the format string, implicit_pos_args_cnt is the number of arguments required by the format string and explicit_pos_args is the number of arguments passed with the position. """ keyword_arguments = [] implicit_pos_args_cnt = 0 explicit_pos_args = set() for name in collect_string_fields(format_string): if name and str(name).isdigit(): explicit_pos_args.add(str(name)) elif name: keyname, fielditerator = split_format_field_names(name) if isinstance(keyname, numbers.Number): explicit_pos_args.add(str(keyname)) try: keyword_arguments.append((keyname, list(fielditerator))) except ValueError as e: raise IncompleteFormatString() from e else: implicit_pos_args_cnt += 1 return keyword_arguments, implicit_pos_args_cnt, len(explicit_pos_args) def is_attr_protected(attrname: str) -> bool: """return True if attribute name is protected (start with _ and some other details), False otherwise. """ return ( attrname[0] == "_" and attrname != "_" and not (attrname.startswith("__") and attrname.endswith("__")) ) def node_frame_class(node: nodes.NodeNG) -> Optional[nodes.ClassDef]: """Return the class that is wrapping the given node The function returns a class for a method node (or a staticmethod or a classmethod), otherwise it returns `None`. """ klass = node.frame() nodes_to_check = ( nodes.NodeNG, astroid.UnboundMethod, astroid.BaseInstance, ) while ( klass and isinstance(klass, nodes_to_check) and not isinstance(klass, nodes.ClassDef) ): if klass.parent is None: return None klass = klass.parent.frame() return klass def get_outer_class(class_node: astroid.ClassDef) -> Optional[astroid.ClassDef]: """Return the class that is the outer class of given (nested) class_node""" parent_klass = class_node.parent.frame() return parent_klass if isinstance(parent_klass, astroid.ClassDef) else None def is_attr_private(attrname: str) -> Optional[Match[str]]: """Check that attribute name is private (at least two leading underscores, at most one trailing underscore) """ regex = re.compile("^_{2,}.*[^_]+_?$") return regex.match(attrname) def get_argument_from_call( call_node: nodes.Call, position: Optional[int] = None, keyword: Optional[str] = None ) -> nodes.Name: """Returns the specified argument from a function call. :param nodes.Call call_node: Node representing a function call to check. :param int position: position of the argument. :param str keyword: the keyword of the argument. :returns: The node representing the argument, None if the argument is not found. :rtype: nodes.Name :raises ValueError: if both position and keyword are None. :raises NoSuchArgumentError: if no argument at the provided position or with the provided keyword. """ if position is None and keyword is None: raise ValueError("Must specify at least one of: position or keyword.") if position is not None: try: return call_node.args[position] except IndexError: pass if keyword and call_node.keywords: for arg in call_node.keywords: if arg.arg == keyword: return arg.value raise NoSuchArgumentError def inherit_from_std_ex(node: nodes.NodeNG) -> bool: """ Return whether the given class node is subclass of exceptions.Exception. """ ancestors = node.ancestors() if hasattr(node, "ancestors") else [] return any( ancestor.name in {"Exception", "BaseException"} and ancestor.root().name == EXCEPTIONS_MODULE for ancestor in itertools.chain([node], ancestors) ) def error_of_type(handler: nodes.ExceptHandler, error_type) -> bool: """ Check if the given exception handler catches the given error_type. The *handler* parameter is a node, representing an ExceptHandler node. The *error_type* can be an exception, such as AttributeError, the name of an exception, or it can be a tuple of errors. The function will return True if the handler catches any of the given errors. """ def stringify_error(error): if not isinstance(error, str): return error.__name__ return error if not isinstance(error_type, tuple): error_type = (error_type,) expected_errors = {stringify_error(error) for error in error_type} if not handler.type: return False return handler.catch(expected_errors) def decorated_with_property(node: nodes.FunctionDef) -> bool: """Detect if the given function node is decorated with a property.""" if not node.decorators: return False for decorator in node.decorators.nodes: try: if _is_property_decorator(decorator): return True except astroid.InferenceError: pass return False def _is_property_kind(node, *kinds): if not isinstance(node, (astroid.UnboundMethod, nodes.FunctionDef)): return False if node.decorators: for decorator in node.decorators.nodes: if isinstance(decorator, nodes.Attribute) and decorator.attrname in kinds: return True return False def is_property_setter(node: nodes.FunctionDef) -> bool: """Check if the given node is a property setter""" return _is_property_kind(node, "setter") def is_property_deleter(node: nodes.FunctionDef) -> bool: """Check if the given node is a property deleter""" return _is_property_kind(node, "deleter") def is_property_setter_or_deleter(node: nodes.FunctionDef) -> bool: """Check if the given node is either a property setter or a deleter""" return _is_property_kind(node, "setter", "deleter") def _is_property_decorator(decorator: nodes.Name) -> bool: for inferred in decorator.infer(): if isinstance(inferred, nodes.ClassDef): if inferred.qname() in {"builtins.property", "functools.cached_property"}: return True for ancestor in inferred.ancestors(): if ancestor.name == "property" and ancestor.root().name == "builtins": return True elif isinstance(inferred, nodes.FunctionDef): # If decorator is function, check if it has exactly one return # and the return is itself a function decorated with property returns: List[nodes.Return] = list( inferred._get_return_nodes_skip_functions() ) if len(returns) == 1 and isinstance( returns[0].value, (nodes.Name, nodes.Attribute) ): inferred = safe_infer(returns[0].value) if ( inferred and isinstance(inferred, astroid.objects.Property) and isinstance(inferred.function, nodes.FunctionDef) ): return decorated_with_property(inferred.function) return False def decorated_with( func: Union[ nodes.ClassDef, nodes.FunctionDef, astroid.BoundMethod, astroid.UnboundMethod ], qnames: Iterable[str], ) -> bool: """Determine if the `func` node has a decorator with the qualified name `qname`.""" decorators = func.decorators.nodes if func.decorators else [] for decorator_node in decorators: if isinstance(decorator_node, nodes.Call): # We only want to infer the function name decorator_node = decorator_node.func try: if any( i.name in qnames or i.qname() in qnames for i in decorator_node.infer() if i is not None and i != astroid.Uninferable ): return True except astroid.InferenceError: continue return False def uninferable_final_decorators( node: nodes.Decorators, ) -> List[Optional[Union[nodes.Attribute, nodes.Name]]]: """Return a list of uninferable `typing.final` decorators in `node`. This function is used to determine if the `typing.final` decorator is used with an unsupported Python version; the decorator cannot be inferred when using a Python version lower than 3.8. """ decorators = [] for decorator in getattr(node, "nodes", []): if isinstance(decorator, nodes.Attribute): try: import_node = decorator.expr.lookup(decorator.expr.name)[1][0] except AttributeError: continue elif isinstance(decorator, nodes.Name): import_node = decorator.lookup(decorator.name)[1][0] else: continue if not isinstance(import_node, (astroid.Import, astroid.ImportFrom)): continue import_names = dict(import_node.names) # from typing import final is_from_import = ("final" in import_names) and import_node.modname == "typing" # import typing is_import = ("typing" in import_names) and getattr( decorator, "attrname", None ) == "final" if (is_from_import or is_import) and safe_infer(decorator) in [ astroid.Uninferable, None, ]: decorators.append(decorator) return decorators @lru_cache(maxsize=1024) def unimplemented_abstract_methods( node: nodes.ClassDef, is_abstract_cb: nodes.FunctionDef = None ) -> Dict[str, nodes.NodeNG]: """ Get the unimplemented abstract methods for the given *node*. A method can be considered abstract if the callback *is_abstract_cb* returns a ``True`` value. The check defaults to verifying that a method is decorated with abstract methods. The function will work only for new-style classes. For old-style classes, it will simply return an empty dictionary. For the rest of them, it will return a dictionary of abstract method names and their inferred objects. """ if is_abstract_cb is None: is_abstract_cb = partial(decorated_with, qnames=ABC_METHODS) visited: Dict[str, nodes.NodeNG] = {} try: mro = reversed(node.mro()) except NotImplementedError: # Old style class, it will not have a mro. return {} except astroid.ResolveError: # Probably inconsistent hierarchy, don'try # to figure this out here. return {} for ancestor in mro: for obj in ancestor.values(): inferred = obj if isinstance(obj, nodes.AssignName): inferred = safe_infer(obj) if not inferred: # Might be an abstract function, # but since we don't have enough information # in order to take this decision, we're taking # the *safe* decision instead. if obj.name in visited: del visited[obj.name] continue if not isinstance(inferred, nodes.FunctionDef): if obj.name in visited: del visited[obj.name] if isinstance(inferred, nodes.FunctionDef): # It's critical to use the original name, # since after inferring, an object can be something # else than expected, as in the case of the # following assignment. # # class A: # def keys(self): pass # __iter__ = keys abstract = is_abstract_cb(inferred) if abstract: visited[obj.name] = inferred elif not abstract and obj.name in visited: del visited[obj.name] return visited def find_try_except_wrapper_node( node: nodes.NodeNG, ) -> Optional[Union[nodes.ExceptHandler, nodes.TryExcept]]: """Return the ExceptHandler or the TryExcept node in which the node is.""" current = node ignores = (nodes.ExceptHandler, nodes.TryExcept) while current and not isinstance(current.parent, ignores): current = current.parent if current and isinstance(current.parent, ignores): return current.parent return None def find_except_wrapper_node_in_scope( node: nodes.NodeNG, ) -> Optional[Union[nodes.ExceptHandler, nodes.TryExcept]]: """Return the ExceptHandler in which the node is, without going out of scope.""" for current in node.node_ancestors(): if isinstance(current, astroid.scoped_nodes.LocalsDictNodeNG): # If we're inside a function/class definition, we don't want to keep checking # higher ancestors for `except` clauses, because if these exist, it means our # function/class was defined in an `except` clause, rather than the current code # actually running in an `except` clause. return None if isinstance(current, nodes.ExceptHandler): return current return None def is_from_fallback_block(node: nodes.NodeNG) -> bool: """Check if the given node is from a fallback import block.""" context = find_try_except_wrapper_node(node) if not context: return False if isinstance(context, nodes.ExceptHandler): other_body = context.parent.body handlers = context.parent.handlers else: other_body = itertools.chain.from_iterable( handler.body for handler in context.handlers ) handlers = context.handlers has_fallback_imports = any( isinstance(import_node, (nodes.ImportFrom, nodes.Import)) for import_node in other_body ) ignores_import_error = _except_handlers_ignores_exceptions( handlers, (ImportError, ModuleNotFoundError) ) return ignores_import_error or has_fallback_imports def _except_handlers_ignores_exceptions( handlers: nodes.ExceptHandler, exceptions: Tuple[Type[ImportError], Type[ModuleNotFoundError]], ) -> bool: func = partial(error_of_type, error_type=exceptions) return any(func(handler) for handler in handlers) def get_exception_handlers( node: nodes.NodeNG, exception=Exception ) -> Optional[List[nodes.ExceptHandler]]: """Return the collections of handlers handling the exception in arguments. Args: node (nodes.NodeNG): A node that is potentially wrapped in a try except. exception (builtin.Exception or str): exception or name of the exception. Returns: list: the collection of handlers that are handling the exception or None. """ context = find_try_except_wrapper_node(node) if isinstance(context, nodes.TryExcept): return [ handler for handler in context.handlers if error_of_type(handler, exception) ] return [] def is_node_inside_try_except(node: nodes.Raise) -> bool: """Check if the node is directly under a Try/Except statement. (but not under an ExceptHandler!) Args: node (nodes.Raise): the node raising the exception. Returns: bool: True if the node is inside a try/except statement, False otherwise. """ context = find_try_except_wrapper_node(node) return isinstance(context, nodes.TryExcept) def node_ignores_exception(node: nodes.NodeNG, exception=Exception) -> bool: """Check if the node is in a TryExcept which handles the given exception. If the exception is not given, the function is going to look for bare excepts. """ managing_handlers = get_exception_handlers(node, exception) if not managing_handlers: return False return any(managing_handlers) def class_is_abstract(node: nodes.ClassDef) -> bool: """return true if the given class node should be considered as an abstract class """ # Only check for explicit metaclass=ABCMeta on this specific class meta = node.declared_metaclass() if meta is not None: if meta.name == "ABCMeta" and meta.root().name in ABC_MODULES: return True for ancestor in node.ancestors(): if ancestor.name == "ABC" and ancestor.root().name in ABC_MODULES: # abc.ABC inheritance return True for method in node.methods(): if method.parent.frame() is node: if method.is_abstract(pass_is_abstract=False): return True return False def _supports_protocol_method(value: nodes.NodeNG, attr: str) -> bool: try: attributes = value.getattr(attr) except astroid.NotFoundError: return False first = attributes[0] if isinstance(first, nodes.AssignName): if isinstance(first.parent.value, nodes.Const): return False return True def is_comprehension(node: nodes.NodeNG) -> bool: comprehensions = ( nodes.ListComp, nodes.SetComp, nodes.DictComp, nodes.GeneratorExp, ) return isinstance(node, comprehensions) def _supports_mapping_protocol(value: nodes.NodeNG) -> bool: return _supports_protocol_method( value, GETITEM_METHOD ) and _supports_protocol_method(value, KEYS_METHOD) def _supports_membership_test_protocol(value: nodes.NodeNG) -> bool: return _supports_protocol_method(value, CONTAINS_METHOD) def _supports_iteration_protocol(value: nodes.NodeNG) -> bool: return _supports_protocol_method(value, ITER_METHOD) or _supports_protocol_method( value, GETITEM_METHOD ) def _supports_async_iteration_protocol(value: nodes.NodeNG) -> bool: return _supports_protocol_method(value, AITER_METHOD) def _supports_getitem_protocol(value: nodes.NodeNG) -> bool: return _supports_protocol_method(value, GETITEM_METHOD) def _supports_setitem_protocol(value: nodes.NodeNG) -> bool: return _supports_protocol_method(value, SETITEM_METHOD) def _supports_delitem_protocol(value: nodes.NodeNG) -> bool: return _supports_protocol_method(value, DELITEM_METHOD) def _is_abstract_class_name(name: str) -> bool: lname = name.lower() is_mixin = lname.endswith("mixin") is_abstract = lname.startswith("abstract") is_base = lname.startswith("base") or lname.endswith("base") return is_mixin or is_abstract or is_base def is_inside_abstract_class(node: nodes.NodeNG) -> bool: while node is not None: if isinstance(node, nodes.ClassDef): if class_is_abstract(node): return True name = getattr(node, "name", None) if name is not None and _is_abstract_class_name(name): return True node = node.parent return False def _supports_protocol( value: nodes.NodeNG, protocol_callback: nodes.FunctionDef ) -> bool: if isinstance(value, nodes.ClassDef): if not has_known_bases(value): return True # classobj can only be iterable if it has an iterable metaclass meta = value.metaclass() if meta is not None: if protocol_callback(meta): return True if isinstance(value, astroid.BaseInstance): if not has_known_bases(value): return True if value.has_dynamic_getattr(): return True if protocol_callback(value): return True if ( isinstance(value, astroid.bases.Proxy) and isinstance(value._proxied, astroid.BaseInstance) and has_known_bases(value._proxied) ): value = value._proxied return protocol_callback(value) return False def is_iterable(value: nodes.NodeNG, check_async: bool = False) -> bool: if check_async: protocol_check = _supports_async_iteration_protocol else: protocol_check = _supports_iteration_protocol return _supports_protocol(value, protocol_check) def is_mapping(value: nodes.NodeNG) -> bool: return _supports_protocol(value, _supports_mapping_protocol) def supports_membership_test(value: nodes.NodeNG) -> bool: supported = _supports_protocol(value, _supports_membership_test_protocol) return supported or is_iterable(value) def supports_getitem(value: nodes.NodeNG, node: nodes.NodeNG) -> bool: if isinstance(value, nodes.ClassDef): if _supports_protocol_method(value, CLASS_GETITEM_METHOD): return True if is_class_subscriptable_pep585_with_postponed_evaluation_enabled(value, node): return True return _supports_protocol(value, _supports_getitem_protocol) def supports_setitem(value: nodes.NodeNG, _: nodes.NodeNG) -> bool: return _supports_protocol(value, _supports_setitem_protocol) def supports_delitem(value: nodes.NodeNG, _: nodes.NodeNG) -> bool: return _supports_protocol(value, _supports_delitem_protocol) def _get_python_type_of_node(node): pytype = getattr(node, "pytype", None) if callable(pytype): return pytype() return None @lru_cache(maxsize=1024) def safe_infer(node: nodes.NodeNG, context=None) -> Optional[nodes.NodeNG]: """Return the inferred value for the given node. Return None if inference failed or if there is some ambiguity (more than one node has been inferred of different types). """ inferred_types = set() try: infer_gen = node.infer(context=context) value = next(infer_gen) except astroid.InferenceError: return None if value is not astroid.Uninferable: inferred_types.add(_get_python_type_of_node(value)) try: for inferred in infer_gen: inferred_type = _get_python_type_of_node(inferred) if inferred_type not in inferred_types: return None # If there is ambiguity on the inferred node. except astroid.InferenceError: return None # There is some kind of ambiguity except StopIteration: return value return value if len(inferred_types) <= 1 else None @lru_cache(maxsize=512) def infer_all( node: nodes.NodeNG, context: InferenceContext = None ) -> List[nodes.NodeNG]: try: return list(node.infer(context=context)) except astroid.InferenceError: return [] def has_known_bases(klass: nodes.ClassDef, context=None) -> bool: """Return true if all base classes of a class could be inferred.""" try: return klass._all_bases_known except AttributeError: pass for base in klass.bases: result = safe_infer(base, context=context) if ( not isinstance(result, nodes.ClassDef) or result is klass or not has_known_bases(result, context=context) ): klass._all_bases_known = False return False klass._all_bases_known = True return True def is_none(node: nodes.NodeNG) -> bool: return ( node is None or (isinstance(node, nodes.Const) and node.value is None) or (isinstance(node, nodes.Name) and node.name == "None") ) def node_type(node: nodes.NodeNG) -> Optional[nodes.NodeNG]: """Return the inferred type for `node` If there is more than one possible type, or if inferred type is Uninferable or None, return None """ # check there is only one possible type for the assign node. Else we # don't handle it for now types: Set[nodes.NodeNG] = set() try: for var_type in node.infer(): if var_type == astroid.Uninferable or is_none(var_type): continue types.add(var_type) if len(types) > 1: return None except astroid.InferenceError: return None return types.pop() if types else None def is_registered_in_singledispatch_function(node: nodes.FunctionDef) -> bool: """Check if the given function node is a singledispatch function.""" singledispatch_qnames = ( "functools.singledispatch", "singledispatch.singledispatch", ) if not isinstance(node, nodes.FunctionDef): return False decorators = node.decorators.nodes if node.decorators else [] for decorator in decorators: # func.register are function calls if not isinstance(decorator, nodes.Call): continue func = decorator.func if not isinstance(func, nodes.Attribute) or func.attrname != "register": continue try: func_def = next(func.expr.infer()) except astroid.InferenceError: continue if isinstance(func_def, nodes.FunctionDef): return decorated_with(func_def, singledispatch_qnames) return False def get_node_last_lineno(node: nodes.NodeNG) -> int: """ Get the last lineno of the given node. For a simple statement this will just be node.lineno, but for a node that has child statements (e.g. a method) this will be the lineno of the last child statement recursively. """ # 'finalbody' is always the last clause in a try statement, if present if getattr(node, "finalbody", False): return get_node_last_lineno(node.finalbody[-1]) # For if, while, and for statements 'orelse' is always the last clause. # For try statements 'orelse' is the last in the absence of a 'finalbody' if getattr(node, "orelse", False): return get_node_last_lineno(node.orelse[-1]) # try statements have the 'handlers' last if there is no 'orelse' or 'finalbody' if getattr(node, "handlers", False): return get_node_last_lineno(node.handlers[-1]) # All compound statements have a 'body' if getattr(node, "body", False): return get_node_last_lineno(node.body[-1]) # Not a compound statement return node.lineno def is_postponed_evaluation_enabled(node: nodes.NodeNG) -> bool: """Check if the postponed evaluation of annotations is enabled""" module = node.root() return "annotations" in module.future_imports def is_class_subscriptable_pep585_with_postponed_evaluation_enabled( value: nodes.ClassDef, node: nodes.NodeNG ) -> bool: """Check if class is subscriptable with PEP 585 and postponed evaluation enabled. """ return ( is_postponed_evaluation_enabled(node) and value.qname() in SUBSCRIPTABLE_CLASSES_PEP585 and is_node_in_type_annotation_context(node) ) def is_node_in_type_annotation_context(node: nodes.NodeNG) -> bool: """Check if node is in type annotation context. Check for 'AnnAssign', function 'Arguments', or part of function return type anntation. """ # pylint: disable=too-many-boolean-expressions current_node, parent_node = node, node.parent while True: if ( isinstance(parent_node, nodes.AnnAssign) and parent_node.annotation == current_node or isinstance(parent_node, nodes.Arguments) and current_node in ( *parent_node.annotations, *parent_node.posonlyargs_annotations, *parent_node.kwonlyargs_annotations, parent_node.varargannotation, parent_node.kwargannotation, ) or isinstance(parent_node, nodes.FunctionDef) and parent_node.returns == current_node ): return True current_node, parent_node = parent_node, parent_node.parent if isinstance(parent_node, nodes.Module): return False def is_subclass_of(child: nodes.ClassDef, parent: nodes.ClassDef) -> bool: """ Check if first node is a subclass of second node. :param child: Node to check for subclass. :param parent: Node to check for superclass. :returns: True if child is derived from parent. False otherwise. """ if not all(isinstance(node, nodes.ClassDef) for node in (child, parent)): return False for ancestor in child.ancestors(): try: if astroid.helpers.is_subtype(ancestor, parent): return True except astroid.exceptions._NonDeducibleTypeHierarchy: continue return False @lru_cache(maxsize=1024) def is_overload_stub(node: nodes.NodeNG) -> bool: """Check if a node if is a function stub decorated with typing.overload. :param node: Node to check. :returns: True if node is an overload function stub. False otherwise. """ decorators = getattr(node, "decorators", None) return bool(decorators and decorated_with(node, ["typing.overload", "overload"])) def is_protocol_class(cls: nodes.NodeNG) -> bool: """Check if the given node represents a protocol class :param cls: The node to check :returns: True if the node is a typing protocol class, false otherwise. """ if not isinstance(cls, nodes.ClassDef): return False # Use .ancestors() since not all protocol classes can have # their mro deduced. return any(parent.qname() in TYPING_PROTOCOLS for parent in cls.ancestors()) def is_call_of_name(node: nodes.NodeNG, name: str) -> bool: """Checks if node is a function call with the given name""" return ( isinstance(node, nodes.Call) and isinstance(node.func, nodes.Name) and node.func.name == name ) def is_test_condition( node: nodes.NodeNG, parent: Optional[nodes.NodeNG] = None, ) -> bool: """Returns true if the given node is being tested for truthiness""" parent = parent or node.parent if isinstance(parent, (nodes.While, nodes.If, nodes.IfExp, nodes.Assert)): return node is parent.test or parent.test.parent_of(node) if isinstance(parent, nodes.Comprehension): return node in parent.ifs return is_call_of_name(parent, "bool") and parent.parent_of(node) def is_classdef_type(node: nodes.ClassDef) -> bool: """Test if ClassDef node is Type.""" if node.name == "type": return True return any(isinstance(b, nodes.Name) and b.name == "type" for b in node.bases) def is_attribute_typed_annotation( node: Union[nodes.ClassDef, astroid.Instance], attr_name: str ) -> bool: """Test if attribute is typed annotation in current node or any base nodes. """ attribute = node.locals.get(attr_name, [None])[0] if ( attribute and isinstance(attribute, nodes.AssignName) and isinstance(attribute.parent, nodes.AnnAssign) ): return True for base in node.bases: inferred = safe_infer(base) if ( inferred and isinstance(inferred, nodes.ClassDef) and is_attribute_typed_annotation(inferred, attr_name) ): return True return False def is_assign_name_annotated_with(node: nodes.AssignName, typing_name: str) -> bool: """Test if AssignName node has `typing_name` annotation. Especially useful to check for `typing._SpecialForm` instances like: `Union`, `Optional`, `Literal`, `ClassVar`, `Final`. """ if not isinstance(node.parent, nodes.AnnAssign): return False annotation = node.parent.annotation if isinstance(annotation, nodes.Subscript): annotation = annotation.value if ( isinstance(annotation, nodes.Name) and annotation.name == typing_name or isinstance(annotation, nodes.Attribute) and annotation.attrname == typing_name ): return True return False def get_iterating_dictionary_name( node: Union[nodes.For, nodes.Comprehension] ) -> Optional[str]: """Get the name of the dictionary which keys are being iterated over on a ``nodes.For`` or ``nodes.Comprehension`` node. If the iterating object is not either the keys method of a dictionary or a dictionary itself, this returns None. """ # Is it a proper keys call? if ( isinstance(node.iter, nodes.Call) and isinstance(node.iter.func, nodes.Attribute) and node.iter.func.attrname == "keys" ): inferred = safe_infer(node.iter.func) if not isinstance(inferred, astroid.BoundMethod): return None return node.iter.as_string().rpartition(".keys")[0] # Is it a dictionary? if isinstance(node.iter, (nodes.Name, nodes.Attribute)): inferred = safe_infer(node.iter) if not isinstance(inferred, nodes.Dict): return None return node.iter.as_string() return None def get_subscript_const_value(node: nodes.Subscript) -> nodes.Const: """ Returns the value 'subscript.slice' of a Subscript node. :param node: Subscript Node to extract value from :returns: Const Node containing subscript value :raises InferredTypeError: if the subscript node cannot be inferred as a Const """ inferred = safe_infer(node.slice) if not isinstance(inferred, nodes.Const): raise InferredTypeError("Subscript.slice cannot be inferred as a nodes.Const") return inferred def get_import_name( importnode: Union[nodes.Import, nodes.ImportFrom], modname: str ) -> str: """Get a prepared module name from the given import node In the case of relative imports, this will return the absolute qualified module name, which might be useful for debugging. Otherwise, the initial module name is returned unchanged. :param importnode: node representing import statement. :param modname: module name from import statement. :returns: absolute qualified module name of the module used in import. """ if isinstance(importnode, nodes.ImportFrom) and importnode.level: root = importnode.root() if isinstance(root, nodes.Module): try: return root.relative_to_absolute_name(modname, level=importnode.level) except TooManyLevelsError: return modname return modname def is_sys_guard(node: nodes.If) -> bool: """Return True if IF stmt is a sys.version_info guard. >>> import sys >>> if sys.version_info > (3, 8): >>> from typing import Literal >>> else: >>> from typing_extensions import Literal """ if isinstance(node.test, nodes.Compare): value = node.test.left if isinstance(value, nodes.Subscript): value = value.value if ( isinstance(value, nodes.Attribute) and value.as_string() == "sys.version_info" ): return True return False def is_typing_guard(node: nodes.If) -> bool: """Return True if IF stmt is a typing guard. >>> from typing import TYPE_CHECKING >>> if TYPE_CHECKING: >>> from xyz import a """ return isinstance( node.test, (nodes.Name, nodes.Attribute) ) and node.test.as_string().endswith("TYPE_CHECKING") def is_node_in_guarded_import_block(node: nodes.NodeNG) -> bool: """Return True if node is part for guarded if block. I.e. `sys.version_info` or `typing.TYPE_CHECKING` """ return isinstance(node.parent, nodes.If) and ( is_sys_guard(node.parent) or is_typing_guard(node.parent) ) def is_reassigned_after_current(node: nodes.NodeNG, varname: str) -> bool: """Check if the given variable name is reassigned in the same scope after the current node""" return any( a.name == varname and a.lineno > node.lineno for a in node.scope().nodes_of_class((nodes.AssignName, nodes.FunctionDef)) ) def is_function_body_ellipsis(node: nodes.FunctionDef) -> bool: """Checks whether a function body only consisst of a single Ellipsis""" return ( len(node.body) == 1 and isinstance(node.body[0], nodes.Expr) and isinstance(node.body[0].value, nodes.Const) and node.body[0].value.value == Ellipsis ) def is_base_container(node: Optional[nodes.NodeNG]) -> bool: return isinstance(node, nodes.BaseContainer) and not node.elts def is_empty_dict_literal(node: Optional[nodes.NodeNG]) -> bool: return isinstance(node, nodes.Dict) and not node.items def is_empty_str_literal(node: Optional[nodes.NodeNG]) -> bool: return ( isinstance(node, nodes.Const) and isinstance(node.value, str) and not node.value ) def returns_bool(node: nodes.NodeNG) -> bool: """Returns true if a node is a return that returns a constant boolean""" return ( isinstance(node, nodes.Return) and isinstance(node.value, nodes.Const) and node.value.value in {True, False} ) def get_node_first_ancestor_of_type( node: nodes.NodeNG, ancestor_type: Union[Type[T_Node], Tuple[Type[T_Node]]] ) -> Optional[T_Node]: """Return the first parent node that is any of the provided types (or None)""" for ancestor in node.node_ancestors(): if isinstance(ancestor, ancestor_type): return ancestor return None