""" This module provides a decorator function for observing changes in a given property. Internally the decorator is implemented using SQLAlchemy event listeners. Both column properties and relationship properties can be observed. Property observers can be used for pre-calculating aggregates and automatic real-time data denormalization. Simple observers ---------------- At the heart of the observer extension is the :func:`observes` decorator. You mark some property path as being observed and the marked method will get notified when any changes are made to given path. Consider the following model structure: :: class Director(Base): __tablename__ = 'director' id = sa.Column(sa.Integer, primary_key=True) name = sa.Column(sa.String) date_of_birth = sa.Column(sa.Date) class Movie(Base): __tablename__ = 'movie' id = sa.Column(sa.Integer, primary_key=True) name = sa.Column(sa.String) director_id = sa.Column(sa.Integer, sa.ForeignKey(Director.id)) director = sa.orm.relationship(Director, backref='movies') Now consider we want to show movies in some listing ordered by director id first and movie id secondly. If we have many movies then using joins and ordering by Director.name will be very slow. Here is where denormalization and :func:`observes` comes to rescue the day. Let's add a new column called director_name to Movie which will get automatically copied from associated Director. :: from sqlalchemy_utils import observes class Movie(Base): # same as before.. director_name = sa.Column(sa.String) @observes('director') def director_observer(self, director): self.director_name = director.name .. note:: This example could be done much more efficiently using a compound foreign key from director_name, director_id to Director.name, Director.id but for the sake of simplicity we added this as an example. Observes vs aggregated ---------------------- :func:`observes` and :func:`.aggregates.aggregated` can be used for similar things. However performance wise you should take the following things into consideration: * :func:`observes` works always inside transaction and deals with objects. If the relationship observer is observing has a large number of objects it's better to use :func:`.aggregates.aggregated`. * :func:`.aggregates.aggregated` always executes one additional query per aggregate so in scenarios where the observed relationship has only a handful of objects it's better to use :func:`observes` instead. Example 1. Movie with many ratings Let's say we have a Movie object with potentially thousands of ratings. In this case we should always use :func:`.aggregates.aggregated` since iterating through thousands of objects is slow and very memory consuming. Example 2. Product with denormalized catalog name Each product belongs to one catalog. Here it is natural to use :func:`observes` for data denormalization. Deeply nested observing ----------------------- Consider the following model structure where Catalog has many Categories and Category has many Products. :: class Catalog(Base): __tablename__ = 'catalog' id = sa.Column(sa.Integer, primary_key=True) product_count = sa.Column(sa.Integer, default=0) @observes('categories.products') def product_observer(self, products): self.product_count = len(products) categories = sa.orm.relationship('Category', backref='catalog') class Category(Base): __tablename__ = 'category' id = sa.Column(sa.Integer, primary_key=True) catalog_id = sa.Column(sa.Integer, sa.ForeignKey('catalog.id')) products = sa.orm.relationship('Product', backref='category') class Product(Base): __tablename__ = 'product' id = sa.Column(sa.Integer, primary_key=True) price = sa.Column(sa.Numeric) category_id = sa.Column(sa.Integer, sa.ForeignKey('category.id')) :func:`observes` is smart enough to: * Notify catalog objects of any changes in associated Product objects * Notify catalog objects of any changes in Category objects that affect products (for example if Category gets deleted, or a new Category is added to Catalog with any number of Products) :: category = Category( products=[Product(), Product()] ) category2 = Category( product=[Product()] ) catalog = Catalog( categories=[category, category2] ) session.add(catalog) session.commit() catalog.product_count # 2 session.delete(category) session.commit() catalog.product_count # 1 Observing multiple columns ----------------------- You can also observe multiple columns by specifying all the observable columns in the decorator. :: class Order(Base): __tablename__ = 'order' id = sa.Column(sa.Integer, primary_key=True) unit_price = sa.Column(sa.Integer) amount = sa.Column(sa.Integer) total_price = sa.Column(sa.Integer) @observes('amount', 'unit_price') def total_price_observer(self, amount, unit_price): self.total_price = amount * unit_price """ import itertools from collections import defaultdict, namedtuple from collections.abc import Iterable import sqlalchemy as sa from .functions import getdotattr, has_changes from .path import AttrPath from .utils import is_sequence Callback = namedtuple('Callback', ['func', 'backref', 'fullpath']) class PropertyObserver(object): def __init__(self): self.listener_args = [ ( sa.orm.mapper, 'mapper_configured', self.update_generator_registry ), ( sa.orm.mapper, 'after_configured', self.gather_paths ), ( sa.orm.session.Session, 'before_flush', self.invoke_callbacks ) ] self.callback_map = defaultdict(list) # TODO: make the registry a WeakKey dict self.generator_registry = defaultdict(list) def remove_listeners(self): for args in self.listener_args: sa.event.remove(*args) def register_listeners(self): for args in self.listener_args: if not sa.event.contains(*args): sa.event.listen(*args) def __repr__(self): return '' def update_generator_registry(self, mapper, class_): """ Adds generator functions to generator_registry. """ for generator in class_.__dict__.values(): if hasattr(generator, '__observes__'): self.generator_registry[class_].append( generator ) def gather_paths(self): for class_, generators in self.generator_registry.items(): for callback in generators: full_paths = [] for call_path in callback.__observes__: full_paths.append(AttrPath(class_, call_path)) for path in full_paths: self.callback_map[class_].append( Callback( func=callback, backref=None, fullpath=full_paths ) ) for index in range(len(path)): i = index + 1 prop = path[index].property if isinstance(prop, sa.orm.RelationshipProperty): prop_class = path[index].property.mapper.class_ self.callback_map[prop_class].append( Callback( func=callback, backref=~ (path[:i]), fullpath=full_paths ) ) def gather_callback_args(self, obj, callbacks): session = sa.orm.object_session(obj) for callback in callbacks: backref = callback.backref root_objs = getdotattr(obj, backref) if backref else obj if root_objs: if not isinstance(root_objs, Iterable): root_objs = [root_objs] with session.no_autoflush: for root_obj in root_objs: if root_obj: args = self.get_callback_args(root_obj, callback) if args: yield args def get_callback_args(self, root_obj, callback): session = sa.orm.object_session(root_obj) objects = [getdotattr( root_obj, path, lambda obj: obj not in session.deleted ) for path in callback.fullpath] paths = [str(path) for path in callback.fullpath] for path in paths: if '.' in path or has_changes(root_obj, path): return ( root_obj, callback.func, objects ) def iterate_objects_and_callbacks(self, session): objs = itertools.chain(session.new, session.dirty, session.deleted) for obj in objs: for class_, callbacks in self.callback_map.items(): if isinstance(obj, class_): yield obj, callbacks def invoke_callbacks(self, session, ctx, instances): callback_args = defaultdict(lambda: defaultdict(set)) for obj, callbacks in self.iterate_objects_and_callbacks(session): args = self.gather_callback_args(obj, callbacks) for (root_obj, func, objects) in args: if not callback_args[root_obj][func]: callback_args[root_obj][func] = {} for i, object_ in enumerate(objects): if is_sequence(object_): callback_args[root_obj][func][i] = ( callback_args[root_obj][func].get(i, set()) | set(object_) ) else: callback_args[root_obj][func][i] = object_ for root_obj, callback_objs in callback_args.items(): for callback, objs in callback_objs.items(): callback(root_obj, *[objs[i] for i in range(len(objs))]) observer = PropertyObserver() def observes(*paths, **observer_kw): """ Mark method as property observer for the given property path. Inside transaction observer gathers all changes made in given property path and feeds the changed objects to observer-marked method at the before flush phase. :: from sqlalchemy_utils import observes class Catalog(Base): __tablename__ = 'catalog' id = sa.Column(sa.Integer, primary_key=True) category_count = sa.Column(sa.Integer, default=0) @observes('categories') def category_observer(self, categories): self.category_count = len(categories) class Category(Base): __tablename__ = 'category' id = sa.Column(sa.Integer, primary_key=True) catalog_id = sa.Column(sa.Integer, sa.ForeignKey('catalog.id')) catalog = Catalog(categories=[Category(), Category()]) session.add(catalog) session.commit() catalog.category_count # 2 .. versionadded: 0.28.0 :param *paths: One or more dot-notated property paths, eg. 'categories.products.price' :param **observer: A dictionary where value for key 'observer' contains :meth:`PropertyObserver` object """ observer_ = observer_kw.pop('observer', observer) observer_.register_listeners() def wraps(func): def wrapper(self, *args, **kwargs): return func(self, *args, **kwargs) wrapper.__observes__ = paths return wrapper return wraps